Nainsi Jain Python Programming

UNIT 3

Function

Q1. What do you mean by function? Give the syntax to define the function with example.

Ans:
A function is a block of organized, reusable code that is used to perform a single, related action.
Functions provide better modularity for your application and a high degree of code reusing.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a
function in Python.

= Function blocks begin with the keyword def followed by the function name and
parentheses (()).

a Any input parameters or arguments should be placed within these parentheses. You can
also define parameters inside these parentheses.

= The first statement of a function can be an optional statement - the documentation string of
the function or docstring.

= The code block within every function starts with a colon () and is indented.

= The statement return [expression] exits a function, optionally passing back an expression
to the caller. A return statement with no arguments is the same as return None.

Program for sum of digits from range xtoy
def sum(x,y): —> Master code

s=0

for iinrange(x,y+1):

S-S+i

print(“sum of integers from x toy :”,s)
sum(50,75) —> Driver code
Output:

sum of integers from xtoy : 1625

Function calling is called driver code and function definition with block of
statements is called master code

Syntax

def functionname(parameters):
"function_docstring”
function_suite

return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order
that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):
"This prints a passed string into this function”
print str
return

Q2. Differentiate between argument and parameter.
Ans: Parameters are of two types:

1. Formal parameter
2. Actual Parameter
Formal parameters are those written in function definition and actual parameters are
those written in function calling.
Formal parameters are called argument.
Arguments are the values that are passed to function definition.
Example:
Def fun(nl):
Print(n1)
a=10
fun(a)
here nlis argument and a is parameter.

Q3. Explain different types of arguments in python.

Ans:

You can call a function by using the following types of formal arguments —

= Required arguments
s Keyword arguments
o Default arguments

B Varable-length arguments
Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the
number of arguments in the function call should match exactly with the function definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a syntax
error as follows —

def printme (str):

print (str)
printme () # error missing 1 required positional argument
def printme():

print (str)

printme (‘hello’) #error, printme () takes 0 positional arguments
but 1 was given

def printme (str):
print (str)
printme (‘abc’)

Output:
abc

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a
function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is able
to use the keywords provided to match the values with parameters. You can also make keyword
callz to the printme() function in the following ways -

def printinfo(name, age):

"This prints a passed info into this function”

print "Nam=: ", name

print “Age ", age

return;

Mow you can call printinfo function
printinfo({ age=58, name="miki")

When the above code is executed, it produces the following result -

Mams: miki
Age 5@

Default arguments

A default argument is an argument that assumes a default value If a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it prints
default age if it is not passed -
def printinfo(name, age = 35):
"This prints a passed info into this function®

print "MName: ", name

print "Age ", age
return;

Mow you can call printinfo function

printinfo(age=5@, name="miki")

printinfo{ name="miki")

When the above code is executed, it produces the following result -

Mams: miki

Age 50
Mams: miki
Age 35

def display(a='hello',b="world'): # you can have only default arguments also

print(a,b)

display()

Output:

hello world

def display(a,c=10,b): # default argument will always come as last argument

d=a+b+c
print(d)
display(2,3) # error, non default argument follows default argument
def display(a,b,c=10):
d=a+b+c
print(d)
display(2,3)
Output:

15

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-fength arguments and are not named in the function
definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this -

def functionname([formal_args,] *var_args_tuple):
"function_docstring”
function suite

return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeywaord variable

arguments. This tuple remains empty if no additional arguments are specified during the function
call. Following is a simple example -

Variable length with first extra argument:

def printinfo(argl, *vartuple

A
):
"This prints a wvariable passed arguments”

print "Output is:

print argl
for var in vartuple:
print var

return;

Mow you can call primntinfo function
printinfo{ 18)
printinfo({ 7@, 6@, 58)

4

When the above code is executed, it produces the following result -

Output is:
1a
Output is:
7a
68
58

Variable length argument Example:
def display(*arg):

foriinarg:

print(i)

display(‘hello’,’'world’,’python’)
Output:
hello
world

python

Q5. Discuss return statement. Can we return more than one values with return statement?

Ans:
The statement return [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as
follows -

def sum(argl, arg2):
Add both the parameters and return them."
total = argl + arg2
print "Inside the function : ", total
return total;

Mow you can call sum function
total = sum({ 18, 28);

print "Outside the function : ™, total

When the above code is executed, it produces the following result -

Inside the funmction : 3@
Outside the function : 38

The Return Statement:

The return statement is used to return a value from the function to a calling function. It is also
used to return from a function i.e. break out of the function.

Example:
Program to return the minimum of two numbers:
def minimum(a,b):
if a<b:
return a
elif b<a:
return b
else:
return 'both numbers are equal’
min=minimum(100,85)
print(min,'is minimum')
Output:

85 is minimum
Returning multiple values: It is possible in python to return multiple values
def compute(num):

return num*num,num**3 # returning multiple values

square,cube=compute(2)

print(“square = “,square,”cube =",cube)

Q4. What is anonymous function? How it is created?

Ans:

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by
using the def keyword. You can use the lambda keyword to create small anonymous functions.

= Lambda forms can take any number of arguments but return just one value in the form of
an expression. They cannot contain commands or multiple expressions.

2 An ancnymous function cannot be a direct call to print because lambda requires an
expression

=2 Lambda functions have their own local namespace and cannot access variables other than
those in their parameter list and those in the global namespace.

= Although it appears that lambda's are a one-line version of a function, they are not
equivalent to inline statements in C or C++, whose purpose is by passing function stack
allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows —

lambda [argl [,arg2,..... argn]]:expression

sum = lambda argl, arg2: argl + arg2;

Mow you can call sum as a functien
print "Value of total : ™, sum({ 18,
print "Value of total : ", sum(2@,

[I

& @
L e

When the above code is executed, it produces the following result -

Value of total : 3@
Value of total : 48

Program to find cube of a number using lambda function
cube=lambda x: x*x*x

print(cube(2))

Output:

8

Note:

e The statement cube=lambda x: x*x*x creates a lambda function called cube, which takes a
single argument and returns the cube of a number.

e Lambda function does not contain a return statements

e It contains a single expression as a body not a block of statements as a body

Q6. Define scope of a variable. Also differentiate local and global variable.

Ans:
Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python -

= Global variables

2 Local variables

Global vs. Local variables

Yariables that are defined inside a function boedy have a local scope, and those defined outside
have a global scope.

This means that local variables can be accessed only inside the function in which they are declared,
whereas global variables can be accessed throughout the program body by all functions. When you
call a function, the variables declared inside it are brought into scope. Following is a simple example

total = @; # This is global wariable.

Function definition is here

def sum({ argl, arg2):
Add both the parameters and return them."
total = argl + arg2?; # Here total is leocal variable.
print "Inside the function local total : ", total
return total:

Now you can call sum function
sum{ 1@, 2@);

print "Outside the function global total : ™, teotal
When the above code is executed, it produces the following result -

Inside the fumction local total : 38
Outside the function global total : @

1.Program to access a local variable outside a functions
def demo():
g=10
print("the value of local variable is",q)
demo()

print("the value of local variable q is:",q) #error, accessing a local variable outside the
scope will cause an error

Output:
the value of local variable is 10

Traceback (most recent call last):

File "C:/Users/Students/AppData/Local/Programs/Python/Python38-32/vbhg.py", line 5, in
<module>

print("the value of local variable q is:",q)

NameError: name 'q' is not defined

2. Program to read global variable from a local scope
def demo():
print(s)
s='l love python’
demo()
Output:

| love python

3. Local and global variables with the same name
def demo():
s=l love python
print(s)
s='l love programming’
demo() # first function is called, after that other satements
print(s)
Output:
| love python
| love programming
The Global Statement

Global statement is used to define a variable defined inside a function as a
global variable. To make local variable as global variable, use global keyword

Example:

a=20

def display():
global a
a=30

print(‘value of a is’,a)

display()

print(‘the value of an outside function is’,a)
Output:

value of a is 30

the value of an outside function is 30

Note:

Since the value of the global variable is changed within the function, the value
of ‘a’ outside the function will be the most recent value of ‘a’

Q 7. What is recursion? Explain with example.Ans:
Recursion is a common mathematical and programming concept. It means that a function calls itself. This has the
benefit of meaning that you can loop through data to reach a result.

Example

Recursion Example

def tri_recursion(k):
if(k>0):
result = k+tri_recursion(k-1)
print(result)
else:
result = @
return result

"y

print{"\ninRecursion Example Results")

tri_recursion(&)

Q Program to find the factorial of a number using recursion
def factorial(n):
if n==0: # base condition
return 1
return n * factorial(n-1)
print(factorial(5))
Output:

120

Note: Recursion ends when the number n reduces to 1. This is called base
condition. Every recursive function must have a base condition that stops the
recursion or else the function calls itself infinitely.

Q8. Program to find the fibonacci series using recursion.
Ans:
def fibonacci(n):
if(n <=1):
returnn
else:
return(fibonacci(n-1) + fibonacci(n-2))
n = int(input("Enter number of terms:"))
print("Fibonacci sequence:")
foriin range(n):
print fibonacci(i),
Q9. Program to find the GCD of two numbers using recursion.
Ans:
def gcd(a,b):
if(b==0):
return a
else:
return gcd(b,a%b)
a=int(input("Enter first number:"))
b=int(input("Enter second number:"))
GCD=gcd(a,b)
print("GCD is: ")

print(GCD)

Q10. Program to find the sum of elements in a list recursively.

Ans:

def sum_arr(arr,size):
if (size == 0):
return 0
else:
return arr[size-1] + sum_arr(arr,size-1)
n=int(input("Enter the number of elements for list:"))
a=[]
foriin range(0,n):
element=int(input("Enter element:"))
a.append(element)
print("The list is:")
print(a)
print("Sum of items in list:")
b=sum_arr(a,n)
print(b)
Q11. Program to check whether a string is a palindrome or not using recursion.
Ans:
defis_palindrome(s):
if len(s) < 1:
return True
else:
if s[0] == s[-1]:
return is_palindrome(s[1:-1])
else:
return False
a=str(input("Enter string:"))
if(is_palindrome(a)==True):
print("String is a palindrome!")
else:

print("String isn't a palindrome!")

